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PRESSURE DISTRIBUTIONS.
By Max M. Munk.

Summary

The following report has been prepared for publication

| by the.National Advisory Committee for Aeronautice. Sultable
locations of orifices for the medsurement of pressure distﬁi—
butions have been discussed. Tables are given for guickly
laying out these locations and for quickly and easily comput-
ing the resultant air forces from the resﬁlt of the measure-
ments.

Introduction

For many aeronautical problems, the mechanical intcrac-
tiqn vetween adjacent particles of air or between particles
of alr and an adjacent rigld boundary can be assumed_exactly.
enough to be a pressure. This means that the three shear
componente become zero, and that the three remaining compres-
sion components become egual to a pressure, say 7p. The phys-
ical dimension of a pressure is g%%gﬁ, and since with a
pure and genuine pressure the force is always directed at

right angle to its reference area, a pressure cannct be said

@Wtk'ﬂﬁm
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to have or t0 occupy any specific direction - it is not a
"vector.!

The pressure of moving alr is generally different at dif-
ferent points. It has to be realized that the pressure now
under discussion really exists; it is the aﬁEUai force per
unit area oetween adjacent particles. There is, however, no
nethod known to measﬁro én atsolute prossure as such. Only
the differcnce between two przssures can bs mecasured. It is,
therefore, necessary to establish a standard pressure before
entering into the discussion of any numerical relation. Such
standard or zero pressure is chosecn differently in different
cases. When discussing heavier-than-air craft (neglecting any
buoyancy of the air) it is customary and most convenient to
consider as zero pressure the pressure of the aimosphere at
the same altitude, when at rest, that is, in absence of the
airplane ang of any wind. This standard pressure 1s not con-
stant under the ordinary assurptions of mechanics, but is dif-
ferent at different altitudes. On the other hand, when dis-
cussing the buoyancy of air as with airships, the variation
_&} the pressure of resting air is of greatest importance and
the standard pressure hes to be chosen otherwise.

In the following, we-denote as pressure the difference
between the gctual pressure at any point and the standard pres-

sure as defined above. This actual prsssure, constituting the

interaction between adjacent particles is often called "static
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- pressure.” Actual pressure and static pressure are identically
the same. |

- Near the surfaces of sollds moving through air, the shear
fches between adjacent particles are particularly large, but
they can still be brac%iéally neglected in so far as the com-
pressive stress of the air can be assumed the same at a spe-
clfic point in whatever direction of the reference plane.
We assume the existenc? of a pressure distribution, of a dis-~
tribution of actual or static pressure, over the surface of an
aircraft‘or of a portion thereof. Tho present discussion re-
lates to the mecasurement of this pressure distributién by
means of small crifices, aistributed over the surface under
investigation. Each orifice is connected to a manometrical
device. It 1s assumed that the pressure at the orifice is not
affected by the presence of the orifice, and that the pressure
is correctly recorded or indicated by the manometer.

If sufficient orifices are provided, the tes}i glves in-
formation about the pressure distribution over the surface inj
vestigated.  This information can be made as complete as de-
sired by simply increasing the number of orifices. In most
cases, the informetion about the pressure distribution is used
for the computation of one or several components of the re-
sultant air foroce equivalent to the pressurec distribution

measured. This resultant air force is not always the entire

resultant«gir force as the shear forces cannot be measured by
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means of pressure orifices, and hence the resultant of the
shear forces is not contained in the resultant of the pressures.
The component of the resultant air force is obtained by
projecting each surface ¢lement parallel to the component.
Each projection is then multipliea by its pressure and all
products summed up. Often the surface is closed, and therc
are alwayé paire of surface elements having thelr projcection in
common. The contribution of such palr of surface elcments is
equal to the »nroduct of tho projection and of the differcacc
of the pressufes of the two surface elements. This diffc;enoe
or sum of pressure of a group of surface elements sltuated at
a straight line parallel t0 the component of resultant force
will be called resultant pressure. 4 resultant pressure hos
the same dimension as an ordinary pressure %%%&9. It is,
however, distinguished by a direction, the direction of the
domponent of the resultant force. Hence the resultant pressure
is a vedtor.
General Considerations Governing the Spacing of the

Pressure Orifices

I nroceed to discuss those problems connected with pres-
sure distribution‘measurements that are specially related 1o
the chief purpose of such measurements, namecly, the determina-
tion of the resultant air force. These problems are chicfly

of a wmathemztical character and infeed very attractive to the
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speculative mind. They subo:dinate themselves to the two prac-
tical questionss . |
a) How should the pressure holes be distributed?

- b) How can the recultant force be conveniently obtained

from the observed pressures? |

The second question is independent of the firsgt one. In
rany cases, the tests are prepared without giving full thought
to the mode of distributing the pressure holes, or, a systc-
matic and well—pIOportioqod distribution cannot be used on ac-
count of details of the structural arrangement of the aircraft.
The choice cf the distribution of the pressurc holes, on the
other hand, should be taken so as (a) to obtain the most ex—
act resultant air force with a given nunrber of holes, (b) to
require the least number of orifices for a desired degree of
exaciness, (c) to be able to determine the integral with the
least possible amount of time and labor, and of errors involved
in the method of computation; all that as far as can be done
practically.

When choosing the distribution of the pressure holes there
should also be taken into account tho type of pressure distri~
bution to be expected if such previous knowledge exists. For
the areas of high resultant pressure contriputé comparatively
much to the resultaat air fofce, and since further the errors
of thc instruments and the slcpe of the pressure curvés are

large within such range, the pressure holszs should be spaced
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cleser at such regions in order to obtain the greatest exactness
of the integral. Otherwise spokon, the oressure holes may have
a different "weighﬁii to borrow an expression from the calculus
of probability. The allotment of these weights requires much
Jjucgment and experience. A general discussion, not referring _
t0 a particular distribution of the weight, is of little value.
Hhen distrivuting the pressure holes, the investigator
should also keep in miné the end of the research, that is, o
obtaln general informcotion on the subject enabling him to pre-
dict %o some extent the pressure distribution over another ob-
ject, different but of similar type. It becomes always nec-
eceary tc select a family of curves, the prsssure distribution
of which is a supstitute for the pressure distributioan over
the entire area, and to select a finite number of pressure
hcles along each curve to be a substitute for the pressure dis-
trivution over this curve. Now, 1%t is often possible %0 spec-”
ify the curves in such a way that the oressure distribution
along them beccmes particularly simple, or at }east approaches
a particularly simple distribution. Often the points can bé
g0 located as 1o form at the same time two famllies of curves,
. each of them with a different type of presgure distribution,
but simpler than the precsure discribution along any third
curve. Tt.is'impossible to lay down gencral rules for such
proceeding, but the investilgator will learn to follow these

suggestions when he has becomc accustomsd not to overlook this
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side of the preparation of the test.

Svacing Along a Line With Constant Weight and
Without Structural Restrictions.

“To begin with the simplest problen, I:suppose for the
present all pressure holes to have the same weight, and their
choice to be left open to the critical mind without limitation
by‘the structural arrangement.of the parts of the aircrafit.

Let further the family of curves be chosen, and for the present,
the attention pe concentrated to one curve only. Pressure holes
of equal welght are to be distributed slong one curve with the _
purpose of obtaining the pressure distribution or the distri- .
bution of resultant pressure, but chlefly of obtaining their
integral, the resultant air force or a part of it. After %hat
has been said in the first section of this paper, it is sup-
posed that the position of each pressure hole is givon by its
normel projection on a plane perpendicular to the desired air
force component. This projection of the curve, moreover, may
be assumed at present to be a étraight line, in order to make
the discucslon as simple ard plain as possible.

The pfessurasbeing determined empirically, they do no%
follow any simple mathematical law, or 1f they do, the law is
not xmomnto the investigator. We have, therefore, arrived at
the problem to integrate a function empirically given at a

finite number of pointe and hence we resort to the so-called
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mechanical or numerical integration, as opposed to the integra-
tion by analytical methods. waever; the discussion of such
integration as found in most text books on mathematicai analy-
sls does not strictly refer to our problem. In case of meas-
uring® a pressure distribution, there are the values of the
pressure givén at a finite number of values of +the abscissa
only, rather than at all points along the range of integration.
Geometrically expressed, a finite number of points rather than
a curve is given. Nelither the complete pressure curve nor itg-'
derivatives at any point i1s knoﬁn. Even this is said too much.
It cannot even be striotly sald that, at a finite nuhber of
poiﬁts the pressure is given, for the pressures observed are
naturally distorted by experlimental errors. It would carry me
too far out of the reach of my immediate topic to dwell on the
theory of such errors, and to discuss the methods of determin-
ing the most probable errors and the most probable results of
the tests. The methods as generally taught are direotly appli-
cable to the determination of pressure distributions and of

the resulting air force therefrom. *The existence of experi-—
Imental errors has been mentioned here only because of its bear-
ing on the choice of the location of the pressure holegQ and

on the method of integrating the pressure. The integration of
the pressure has to b? made in such a way that no exporimental
errors be given an undue influence on the final results of the

integration. The ecrrors are distributecd in an unknown way,
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but subjecé to the general laws of probability. The mode of in-
tegration shoﬁld be such that the probable error.of the inte-
gral stands in a due relation to the single error of each read-
ing. This now will be the case, and the best results will be
obfained if each reading enters into thé process of integra-
tion with a weight as nearly equal as possible to its real _
weight. _This’gene;al‘iemark will become, clearer when We pro-
ceed to thé different methods worked out. -

The distributions of the pressure holes, on the other hand,
if systewatlecglly chosen, are based on the method of integra-
tion and hence arc closely connected with the last considera-
tion. All other thinge belng equal, a good distribution of
pressure holeé leade to such methods of obtaining the final in-
tegral, which give each reading ite proper weight.

. Almost the same demands follow from the condition of small-
est errors of numerical compgtation. Such numerical computa-—
tions (if any) consist necessarily of repeated additions and
miltiplications, and each single step is closely connected with
the choice of the disfribution of the pressure holes. A dis-
tribution of pressure holes 1is poor, if it involves taking small
differences of large quantities. The error of the resultant
force is smallest when all resultant pressures arc of equal.
sign and uniforrly distributed. It is in this case that the -
errors of computation should become smaliest too.  They will,

if all pressures cnter with nearly their truc weight into the
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integration, not if they are first to be muliiplied by multi-
pliers of greatly varying magnitude, or by such even varying in
sign. This point of view will immediately be taken up in the
next section. |

Graphical Integratlon

Lot therc now be n points, on & straight line, at which
the resultant pressure is 0 be measured. Let the line extend
from x=4a to x=b; let the pointe at which the pressure
has becn determined have the absclssae 'xl to x,,. and let the
préssures at these points be denoted as p 1o pu. _Suppose
for simplicity of expression that the pressures be plotted as
ordinates giving n precssure points (Fig. 1).

The determination of the resultant force (for a strip of
the width = 1, say) roquires two steps; (a) all pressure
points bave to be connected by a cu%ve (mentally or acfually)
-and (b) this curve has to be integrated.

Up to now it has Been almost general practice to perform
these steps graphically. The pressure points were connected

by an arbitrary curve subjected, however, to the condition

that it appcared "smooth" t0 the artistic fceling of the drafts-

man. Analyzing this condition closer, it consiste chiefly in
the mathematical condition that the value of the ordinate of
the curve, cf the slope of the curve, and at best of the curva-

ture should  not vary abruptly. H¥ow, the last condition, though

*
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it may be.in keeping with the actual pressure distribution, does
not by itself necessarily lead to the most exact value of the
integral. The graphical méthod in itself ié not particularly
inexact. On the contrary, 1% can be made as exact as desired
and as is possible in view of the errors of the pressure read-
ings by using large enough diggrams. In some cases, the graph-
ical method ié the most convenlent one tco, in particular, if
the spacing of the pressure holes had tc be or was lrregular,
and if not, many pressure distributions at the same holes are
measured, making it otherwlse necessary to work out with much
paing an inconvenient scheme of mumerical integration, %o be
applied a few times only. Here, then, the mothod of least
mental work is at thc same time the method of least work. Even
then, however, the graphical method possesses one distinct and
important disadvantage. The curves between the pressure points,
whether actually drawn in, or whether only the mental illustra-
tion of a mathematlcal process, are not known and therefore
arbitrary to soms extent.' The way of choosing them has an ap-
preciaple effect oﬁ the integration. Hence if two tests are
repeated, or only the evaluation of one test, the results will
be different in general. It is not possible, or at least it
never has been worked out, to draw the connections according to
some standard scheme. |

I wish to emphésize the fact that the distribution of the

presgure holes has an equal effect on the exactness of the re-
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sult in either of the two cases where the intogration has been
made graphically or -numecrically. He is mistaken, therefore,
who- thinks that the intention to integrate graphically relieves
him from the duty to carefully sclect the spacing of tho pres-
éuré holes. Tho discussion of the spacings farther below re-
fers in the same way to all tests, no matter how the resulting
pressure is intended to be determined. The choice of an un-
systematic spacing without external reasons therefore always
deserves censure. For %this rcason, the cascs are infroquent
where a graphical integration is recommended. The general pro-
cedure of the graphical integratior is generally known. I wish
to makXe only one remark. It often occurs that the pressure
curve intersects with the base line, the pressure being alter-
nately positive and negative. Even then, working with the or-
dinary planimecter, i% is allowed t0 circumscribe the pressure
area one time, following first the entire vressure curve and
closing it along the base linc.

The same remark holds true when determining mechanically
the static moment or thc moment of inertia with respect to a

point of the base line. The instrument used is slightly dif-

ferent from an ordinsry planimeter. But agoin the entire pros-

sure area has to be circumscribed, and again it is unnecessary
to split this area in parts of equal sign. Follow first the
' entire pressure curve and thon the base line.

The numerical integration of the pressure in moet cases and
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in some respects in all cases is superior to the graphical inte-
gration. There are different numerical methods .again, with ad~
vantages snd disadvantages peculiar to each of them. It is easy
to select one of them as a standard method and thus to obtain
always the same integral from the same test data. A greater

consistency of the results and safer conclusions are gained.
WMumericel Integration, Cotesius! Method

In most cases the pressure holes can be systematically
spaced. Then the numerical integration is decidedly easier and
less time-absorbing than the graphical integration. It beoomesf:_
quite unnecessary to plot the pressure readings, or at least,
1f such plots are desired for illustration, they can be made
less exact. The mechanical integrators can be dispensed with,
and this means an immense saving in +time, in labpr, in mental
strain and in annoyance. The numerical operations, taking the
place of operating a planimeter or a similar instrument, can be
chosen to be of the simplest kind. The multiplications can be
dore exactly enocugh by means of a slide rule, or more conven-
ienfly by means of a good calculation machine; the additions
should be made with a calculation machine. It is worthy of re-
mark that these recommendations are in kecping with the general
developiment of performing technical computations. The last
century was the century of graphical methods, the wages were

then low and the calculation machines bad and expensive. Now,
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through the development of good calculation machines, all that .
has changed. The graphical methods are more and more abandoncd
or only retained for illustrative purposes. In its stead the
use of the calculation machine becomés prevalent. And it can
generally be said that the calculation machine and the methods
based on its use have in qommdn with other machines that which
holds generally for the replacement of hand labor by machine
labor. The graphical methods are more general and do require
less preparation for a novel case and then require less time
and less mental work. But for a standard problem, once the
scheme for numerical computations has been worked out, the nu~
merical method is easier, less toilsome, less time-absorbing,
giving more exact results and giving uniform results, more eas-
iiy chocked and last but not least, docs not involve any per—
sonal factor. This latter means that any one obtalns the same
results from the same data, once the method has been decided
- upon.

I proceed now to the discussion of the different cases.
A spacing of pressure holes, which is often found and indéed
suggests itself the most readily,_is the division of the straight
line into equal parts. Let the number of points be n, and
hence the mumber of spaces be n — 1. This disagreement between
the number of points and number of spaces destroys the uniform-
ity of the arrangement and makes the equal gpacing little rec—

ommendable, as we shall lmmnediately see.
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There have beeon several methods devised for the numcrical
integration. It is to be desired that all these methods are in
some woy indcpendent of the size of the ordinates. By this I
mean the followingé The computation has to bc prepared by com—
~ puting tablcs of the numerical valucs used in the numcerical in-
tegration. The computation of these tables is laborious, and
it is desired that such tables be made once for all, not new
ones for cach integration. Therefore, the proccdure has o con-
gist in the conbination of the crdinates with the figures of
the integration table by means of simple algebraic operztions,
This most general case will be treated first. Afterwards I
shall take up certain special cases where the particular type
of the vpressure distribution to be integrated will be taken
into account, and yet the methods remain general enough and
can be used for all possible values of the ordinates.

An o0ld method of numerical integration is the one of
Cotesius.* He chose as curve connecting all n pressure
points the algebraic curve of nth dJdegree containing all these
points. It is known that there always exists one and 6n1y one
such curve. This way of connccting the poinits will be found
again farther below, when wo discuss the method of Gauss and
the improved methods derived therefrom. Now, it must be borne

in nind that the addition of expressions of nth degree, say,

* Roger Cotesius, English mathcmatician, 16823-1716.
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f; (x) = ¥, = AO + Alx + A2x2 + it + Anxn
f, (x) =y, =By +B,x + B, + ........ + B,xt

etc., gives a new expression of nth (or lower) degree again.
Herein the "A" and "B" dengte constants, .x denotes the ab-
scissa, and y +the ordinate (pressures in this case). On the
other hand, it is always possible to write down an expression
of nth degree which is zero at all points, Xx;, X, -.... Xp
except one, Xy, at which latter it assumes the magnitude of

unity. Such expression can be written in the shape

- Pnix)
fm(x) 62?}-_:;) (1)

whéﬁe 9, @again is -
Op = (x-%,) kx~x2)...(x-xm_1) (x-Xpy,) - o (xx,) (2)

¢, is the product of (n - 1) factors. At all points x; to
Xn except at Xy, one of the factors becomes zero, and hence

9 (x) becomes zero. At x = Xy, Pu(x) = 9p(x,) and hence

fpu(Xy,) becomes 1. (1) is therefore the desired expression of

the nth degree, for it will be realized that f,(x,) is a
constant. Hence the polynomial '‘expressing the curve of nth

degree through all points can be written

F =5, 9, +f, Vg * covasees * fo Vo | (3)
where the y denotes the pressure at the point. Indeed, at
any point xp, all f except fp are zero, I, = 1 and

hence F = yp-
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Yow, it is not necessary to actually form F. Let us sup-

pose that (3) be now integrated with respect to _dx. Then

afb Fdx = ylafb g.dx + ¥ afb £ dx ...... Yna-_fb fdx (4)
It is generaily assumed that the length of the base (b - a) = 1
(sometimes 2). The miltipliers are generally computed for this
case. .
Hence we have arrived at the following result, applying to

any spacing, cqual or not:

| In order to obtain the integral of the curve of nth de-
grze possing through all n points given, we have to rmultiply
.each pressure Yy, Dby a multiplier, say Hp, which multiplier
is independent of the value of the pressures y, but only de-

pends on the spaclng of the pressure points. The magnitude of

the multipliers is

g, =/ 2D gy | (5)

‘where ., is given by equation (2)-

The method can be followed whether the pressure changes its
sign in the interval considered or not, and whether the spéqes
are equal or not.

Cotesius considered only a spacing (x - x,)=(x - % );

X, =& ; X, =Db ; etc., and employed the method described. He
was the first to publish a table of the multipliers, H, for

a nurber of points n=1 +0o n = 11. This table is revoro-



¥,..0.A. Technical Note No. 230 . 18

duced as Table I in this paper. Fot reason of symmetry, it is

sufficient to give only half of the factors, since

Hy = By . (&)
The desired integral is
(g - %) Ey vy v H ¥ + --0nnn + Hp ¥n (7)

The inSpecfion of Cotesius'! table shows a characteristic
of Cotesius' muiltipliers H which could not eagily be antici-
pated at first approaching fhe ?rdblem. Since the multipliers
depénd on the spacing only, and the spacing is'constant, it -
would not seem unlikely that the maltipliers H beconme uniform;.
1y distributed along the interval, in that H has the largest
value in the middle and gradually falls off to the ends of the
interval. Such is by no means the case. On the contrary,. not
only are the differences of two adjacent multipliers of vary—

ing sign, but even the multipliers themselves are of varying

sign, some of them becoming unegonitive for odd n.
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TABLE I
Table of Cotesius
n Hl H2 HS H4 Hs HG
L
2 2 %
3 & &
. 3
4 5 3
5 _7 32 13
50 50 90
e .18 _75 _50
58 558 268
. 41 216 27 272
‘1. Ba0 840 8§40 840
g 751 3,577 1,32 2,989
17,260 | 17,280 | 1I¢,280 | 17,280
9 989 5.888 | _-928" | 10,4958 | =-4,540
28,350 | 28,350 | 28,350 | 28,350 | 28,350
10 | _2.857 | 15,741 1,080 | 19,344 5,778
5,600 | ©€9,600 | 83,600 | 89,600 | -B9,600
11 | _18.,067 | 108,300 | —48.535 | 372,400 | -380.550 | 437,388
| 508,752 | 598,753 | 598,752 | 598,753 | 598,753 | 598,752
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This characteristic of the multipliers for equal spacing
is in contradiction to the condition of not deviating too far
from the weight of the observed pressures, as discussed before.
"It really makes the methed impractical, and Cotesius! multi-
pliers are seldom used except'for very smll n. Cotesius'
method has some merits for the compitation of mthematical
tables, where the ordinates are not distorted by errors. I%
has to be discarded, however, for the integration of empirical

observations as the pressure at equally spaced points.
Simpson's* Rule and Generalizations Thereof

In its stead, the so-called Simpson's rule has found a
wide application. It refers to an odd =n only, which is a

Gistinct disadvantage. Simpson divides the intervals of inte~

gration into I = 1l parts. ZEach interval thus obtained is.

equally speced into two parts, and Cotesius! Table for n= 3°

is applied to it. Cotesius' multipliers for n = 3 are in the

ratio 1 : 4.1. Adding, now, all intograls for the L3 1
partcs of the intervals, the multiplisrs for the ends of adjac-
ent parts have to be added. Hence Simpson's multiplicrs are

in the ratio

n=3 1 4: 1 (Like Cotesius)
n=5 1.:4:23:4:1
n=% 1:4:2:4:2:4:1

etc.

* Thomes Simpson, English mathemsticlan, 1710-17€1.
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The integral is
% (y, + 4y, + 3V + 4y, + ceuvvn )

where a denotes the space between two adjacent points.

Now, thé imperfectness of Simpson's rule, namely, that
thg adjacent factors differ in the ratio of 1 ¢ 3, 1is the
direct consequence of itreating each pair of adjacent points un-
symmetrically. The entire base is divided into parts equal
to two spaces, and the ordinates at the ends of a space are
treated differently, according tq whether they are located at
the end or in the middle of a double space. Accordingly, we
can hope to improve the method by treating all ordinates alike.
This can be done by considering each space by itself, not the
gpaces in pairs.

The area over one space can be computed in filrst approxi-
mation from the values of the ordinates at its ends, closing
the space by a straight line connecting the pressure points
at the ends of each space (Fig. 4). This procedure means a
repeated application of Go%esius' method at each space with
n=23. It would result in multipliers'standing in a ratio
1:2:2....21%71. The orobabllity of a reasoncble ex-
actness of such integration is not great enough, however. I
would not recommend the general employment of this method for

the computation of the resultant force from the measurement

of pressures at a serics of points equally spaced.
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Simpson improved the integral ovor oné space by taking into
account not only the pressurcs at the ends, but also the pres-
sures ot onec more point, namely, the point next to the one at
one end of the space in question. It is this unsymmetric pro-
ceeding that gives rise to the lack of uniformity of Simpson's
multipliers. Hence the logical step to improve Simpson's rule
is to teke into account additional pressures at points located
symmetrically with respect to the interval to be integrated.

It is equally logical to choose the numbor of these additional
points as 2, or of all points as 4, this being the emallost
number of points admitiing of a symmetrical arrangement. And
at last there is only bne obvious way to select the two addi-
tional points; they arc the two adjacent to the ends, as shown
in Fig. 5; This can always be Gone except for the last space
in the interval. I vropose usiﬁg only one gdjacent point for
the integration of the end interval, thus using Simpson's rule
for the two end infervols only. If there are only two inter—
vals, or threce points, Simpson's rule and mine reducc to Cotesi-
us multipliers for n = 3.

I proceed to the determination of the multipliers and inte-
grate first over one interval not 2t the end. Let, for in-
stance, the length of 3 spaces be 2, and let the ends be located
at the points x = +1 and x = -1. Now, suppose o curve of 34
degree to be drawn such that the ordinate y becomes zoro at

the points x = -1, ~%, end +1, and vy =1 at thc point =%-.

<
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The equation of this curve is
(x2 - 1) (x + L

-F((l\ -]) (+— +71

By inserting =x = 1 or i%, it becomes evident that this

PA
3

curve azrees with the conditions laid down. Now integrate ¥

1 X
between Z and + %

+1se (22 - 1) (x + &)

((1\2 - 1\ g/ ox = 31_%

It can directly be seen that the value of this integral
would have become %% y) in case y. would have been V3
instead of 1 at the pcint x = + %_. For the curve to be inte-
grated would have agresd with the one actually integrated, ex—
cept for the constant factor ys. The area is therefore
13 v, or written as thc product of the value ¥ , the base

36
length cf= %) and a constant factor, the integral is

° Vs 24

The symmnetry of the problem shows further, that the integral of
a similar curve, having the ordinate y, at the point

- 1x 3¢ .
g 2 would be

c ¥,

NIe
(0

The superposition of the two curves gives one having the

ordinates zero at the two adjacent points and having the ordi-
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nates y, and y3 at the two ends of the iﬁtegration.

It is possible to computelthe miltipliers for the adjacent
points 1 and 3 in a like way. They follow much more simoly
from the consideration that for equal ordinates vy, = vy = y3 =
¥e the crea must come out ¢ y,, and that the two multipliers
for the adjacent points must be equal for reason of symmetry.
Hence, ccunting now all four curves, We obtain one passing
through points with ordinates y, %o y, at x = #*1.5 ¢, #0.5 c.

The integral of this curve, along the middle interval is

1 13 13 1
34V 0t Yo Ot 3a Vs O 5f Va O

)

I pass now t0 an end interval. Let the base extend from

~1t0 +1, ané the intogral from O to +1. The parabola with

¥, = ¥ =0, Y, =1 hes the equation y = (1 - x®) the inte-

~

gral of which is

S 1 - x?) ax =-§—.
[o]

Now, ¢ =1 and hence the area becomes

V. £ o

Likewise, let the parabola have the ordinates vy, = y, = 0,
¥, = 1, giving the equation y, = 1 (x® + x) and the integral

P
1 r*(x= = + 2x2 = + 2
2.{ (x2 + x) dx = + 5x2 = + 35

The area is

1
iz Vs ©
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Finally, let vy, =1, v, = ¥% = 0,

=1 (x®- x)
y =4 (

. .
%Of (x2 - x) d.x=--:€'—2 ¥, ¢

hence, the general formula for the integrals.

+

Are&:c("‘—]%Ya +1%Y2‘1%Y1>'

As expected, this gives ¥y, ¢ in case that ¥y, = ¥ = Ya-

T am now enabled to write down the multipliers for the gen-
eral case of n points with equal spacing, by adding thec int_e—
grals over all single intervals:

For instance, for n = 6

1st interval 5/12 8/12 | -1/12
34 " ~1/24 | 13/24 | 13/24 | -1/24
3d " ' ~1/24 | 13/24 | 13/34 | -1/24
4th L - -1/24 | 13/34 | 13/34 | -1/24
5th " | -1/12 | 8/13 5/13
Sum o/s84 | 38/24 | 23/24 | 23/34 | 238/24 | 9/24
1 3 3 4 i 5 8

A

B TRt

el edngn (0
ae et o Lo Langley
Jemoriai Acrenautical
Laseratofy
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TABLE II
Improved Multipliers H for Equal Spacing.

= . i 1
n =23 (Cotesius) H =3, H, = 5
n =23 (Cotesius and Simpson) % %. %
8 8 g 8
n=5.§. 28 . 23 28 -9
24 24 34 24 34
n=6 -2 38 23 33 28 8
24 24 24 34 24 24
a=7 2 38 33 24 23 28 9
24 24 34 24 24 24 24
n=n .2 28 33 24 34 24 23 28 _8
34 a4 34 24 24 ‘34 2% 24 24
Area = ¢ (Hy v3 + Ho Vo + « « « « « . + Hy yq)

The preceding table is to be used in the same way as Simp—
gonts; the ordinatcs are 10 be multiplied by thelr respective
multiplier, the products so obtaincd are t0 be added together
and the sum has to be multiplied by the length of one space.
This holds, no matter what the signs of the ordinates are, but
of course a negative ordinate gives a negative product and this

sign has t0 be given attention when adding up all products.
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Multipliers for Arbitrary Spacing

The fargoing method can be cxtended to an arbitrary spacing.

Again, a parabola of third degree can be imagined to be drawn
through four consecutive points and the area of the mlddlec seo-
tion ¢ obtained by integration. I omit the simple computation

and zive only the result. Let a, b, ¢ be the length of three

consecutive spaces. Then the aren over the middle space b bo-

comes

2 2
AT - b Y + 3bc + 4ab + Bac b B + 2ab + 4bc + Bac .
% =13 (c + o) & Y2 * 13 (a + o) o Ya

b b> + 2ab® v, - & ¥ + 388 ¢
12 (a + b + c) (b + c)c 7« 12 (& + b + ¢) (b + a)a

(8)

The first and last ‘sections are integrated by choosing
the parabola through the first three or last three points as
boundary line.

The area results ) .

ay, /3o + 3b) a(a + 3b) & v
6 “(a+pb) T b 6b (a + b) (9)

Each of the single areas has to e expressed by means of these
formulas (8) and (9) as sums of the ordinates vy, each multi-
plied by a numericel constant, and all these expressions have

t0 be added, giving in each case a series of rmltiplilers %o be

used as in all cases discussecd before.
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The computation of the multipliers, though by no meoans 4if-
ficult, is loborious, and it is alwaye preferable to distribute
the vressurec holes systematlically and to use standard tables

rather than tables made up for the special occasion.
Gause! Method of Integration

Proceeding now to unequal but'systomatic epacing, there - -—-
has first to be mentioned the method of Gauss.* This method
has the imnensc advantage of a uniform variation of the multi-
pliers. This uniformity will also be maintained for all distri-
butions derived from Gauss' method.

Goues himself stressed chiefly the point of highest accura-
cy with a given number of ordinates in conjunction with the meth-
ods not dircetly depending on the values of the ordinates. The
gencral method is quite analogous to Cotesius'! method and the
other methods discussed. ZXach ordinate is multiplied by its
maltipliers, which latter depends on the epacing only. All prod-~
ucts are then added. The multipliers are again computed by in-
tegrating the curve of (n - 1)th degree having the ordinates

Y9 = T2 = - == ¥m-4i = ¥m+1 — - - - — ~ =yp=0 and yu= 1.

The variation left conslsts therefore in the spacing of the
ordinates used. Gauss thought chiefly of the integration of
mathemntical functions and supposed them to be well approximated

by a series of terms of powers of X,

* ¥arl FPricdrich Gauss, German mathematician, 1777-1855.
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Ao + Ay x + &5 x* + eto. (10)

Now, if there would only be n. terms in the expression./10)
every method of integration of this kind would be absolutely
exact, since then the curve of nth -degree would coincide with
the curve to be integrated. Gauss proposes to select the spac~
ing in such’'a way that the integration would also be exact for
the next n terms of the serics (10). A short reflection will
.show that this is equivalent %to the condition that all curves
passing through the base points and being of a degrec not
higher than n have the integral zero. Their addition %o any
curve would not change the ordirates ;n question and hence
would not change the integral. This gives n equations for
the computation of the =n abscissaec.

Gauss has computed the abscissae and rultipliers up o
n="7. In Table III, theose valucs zre reproduced an& further
the values for n=8 to n = 13, as computed for this paper
by Dr. Paul E. Hemke, an 4merican mathematician and member of
the technical staff of the National Advisory Committee for

Aeronautics.
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TABLE III
Gauss! Table and P. E. Eenmke'!s Table”
Base length = 1
n=1
X, = 0.5 K, 1
. n=2a
X, = 0.21682 H, 0.5
n=323
X, = 0.11370 H, = 5/18 = 0.3777
¥, = 0.5 H, = 8/18 = 0.4444
n = 4
X, = 0.11943 H, = 0.17393
X, = 0.33009 H, = 0.32807
n=>5 '
X, = 0.04621 H, 0.118486
X, = 0.33077 Ho 0.23931
Xa =% Oc SOOCO HS Ot88444
Xqg = 0.76023 B, 0.33831
Xz = 0.95307 He 0.118486
n=2~6
X, = 0.03$765 H, 0.085663
X, = 0.16940 Es 0.18038
Xs = 0.380€9 . Hs 0.233396
Xs = Co. 61931 2% ", 0.33396
Xs = 0.83060 j¢09 Eg 0.18038
X = 0.96633 .03% Hg 0.085663
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0.025446

0.12933
0.39708
0.50000
0.70283
0.87077

0.97455

0.019855

0.1.C137
0.23733
0.40828
0.59172
0.76277
0.89833
0.98015

0.015820
0.081985

0.19331
0.33787
0.50000
0.6€313

0.80E69
0.981803

= 0.238408

Table III (Cont.)

n=7"
H,

23

0.064742
0.13985
0.198092
0.20898
0.19092
0,13985
0.084742

0. 050614
0.31312
0.15685
C.18134
0.18134
0,15685
0.11119
0.050614

0.040637
0.090324
0.13031
0.15617
0.16512
0.15617

0.13031
C.030334

= 0.040637
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0.013047
0,067469
0.18030
0.28330
0.42556

- 0.5744%

0.71670

= 0.93353
= 0.88635

0.010886

0.056469
0.13492
0.24045

0.36523

6. 50000
0.63477

0. 75955

0.86508

= 0.94353

0.68911

Technical Note No. 830

Table III (Cont.)

n =10
H, = 0.033336
H = 0.074729
Hs = 0.10954
He, = 0.13483
Hs = 0,14776
He = 0.14776
H, = 0,134863
Hg = 0.10954
Be = 0.074729
Hyy = 0.033336

n=11 |

H, = 0,027839

Hp = 0.063795
Hs = 0.093150
H, = 0.11658

He = 0.13141

He =. 0.13646

Hy = 0.13141
Hs = 0.11658
Hs = 0.093150
Hio= 0.063795
Hyy= 0.027839

32 -



33

Table IIT (Cont.)

n =
X, = 0.0092185

X, = 0.047942
¥s = 0.11505
X, = 0.30634
Xs = 0.31808
X. = 0.43738
X, = 0.56262
Xg = 0.68303
Xo = 0.793686
X,o= 0.88495
X,,= 0.95208
Xiz= 0.99078

12
H, = 0.023588

H> = 0.053470
0.08C039
H4, = 0.30158

Ha

H, = 0.11675
He

H, = 0.12457

0.13457

Hg = 0.11675

a8
)
]

0.10158

Hyo= 0.080039
H,,= 0,053470
H,.= 0.083588

Taking up now:the question of exactness, it seems sound to

expect a srall probable error from Gauss' method. The question

cannot be answered directly, as

integrating curves determined

by single pointe that are empirically found is quite another

thing than integrating a mathematical function. No safe criter-

ion can be given in the former case except that one can discuss

a moTre or less probable exactness. 1t should, however, be

borne in mind that even for the integration of mathematical

functions, Gauss' method is exact for 23n terms in powersg of

Xx. The power series, howecver,

is by no neans the only one, nor

in any wayv particularly distinguishad from an cxpansion of a
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function into a seriecs nrogressing in terms of some other func-
tions. For any kind of cxpansion we can compute a distribution
of points such that the integration is exact for 3n terms of
such series. In general, this gives distributions differcnt
from Gauss'. As a consequence, the multiplisrs will be differ—
ent, too. No criterion hae come to my lmowledge deciding which
of such expansions gives the most exact results, and probebly
this question cannot be answered at all but depends on the
funoﬁion to be integrated. We have arrived at a probability
problem of a very general kind.

Since the powers of x (parabolas) have played the most
important part in modern mathematics, it will probably be wisest
to follow so great and eminent a man as Karl Friederich Gauss,
and to adopt his method for the general case as the most exact
one. A slight variation does not produce any large difference
of the result any way. Beéides, the chief advantage 1s the
uniformity of the multipliers rather than the large exactness.

It should now be clearly understood that Gauss recommended
this method under the condition that the probability of the mag-
nitude.of the ordinates be equal along the entire range of inte-:
gration. In our case, this would be the case if the resultant
pressure is measured along a line over a limited vortion of the
surface of the aircraft, not extending to the edge or end, at

which the resulting pressure is primarily zero. Morcover,

nothing would be known beforchand about the %y‘pe of pressure
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distribution to be expected. In such cases, Gauss' (and Hemke's)
spacing and rultipliers can be used without modification what-
soever.

Spacing for Special Types of Pressure Distribution

In mény cases, where the line reaches up to an edge of the

aircraft, or through it (as the wing chord, or the diameter of

a round airship hull, for instance), the resulting pressure is
sure to be zero at the two ends O0f the line. This case is so
general with investigation of pressure distribution thet it is
worth while +to consider it separntely. It pays to modify the
Gauss table for this case. The proceeding is somewhat arbitrary.
Two methods suggest themselves at flrst glance, the first of
which will seem inferior to0 the second =zt closer cxamination.

In the first instarnce, Gouss' method could he generalizced
in suoh.a way that two abscissae are given; in this case two
zero ends. 1. other voints are to be computed so that the in--
tegration becomes exact for n additional forms of the power
scries.

I prefer another way, which leads to different results.
The problem as stated just before involves only a2 vanlshing re—
sultant pressure at the ends, but 1t does not include the re-
sultant prescure to be small near these ends. I prefer select-
ing a probability or welght function along the entire range,
giving zero at the ends. 4 convenient weight function is

cos T %. Let the base extend between the points x = +1 and p
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denote the pressure. Then write

p = cos mF P (x) 2(x) = ____P__;
cos T £

Wo have to integrate
+1

+1
{ pdx = f &(x) cos ™

+1
dx=%f ®(x) & (sinm X))
- 3

bVES

I insert now sinm lgi for x 1in Gauss' tables, obtaining new
abscissae. The multipliers with respect to & (x) remain un-.
altered. But since ¢ (x) sinm % are measured; the multipli~

ers arc cqual to H = —2 Ho _ -gng can then directly be ap—
m ginm £

2
plied to the values of the pressures, that is, the new Xo and
H are to be used in the same way as before. Table IV gives

the modified Gauss-Hemke Table, for the length 2 of the base.

They are computed by Dr. Hemke for this ‘paper.

"TABLE IV.
-}
. i n=>5 -

X, = -0.72202 H, = 0.356686
X. = -0.36200 , Hy = 0.36180
Xa = ‘0 ‘8 = 0.36217
X = 0.3€300 Hs = 0.38160
Xs = 0.72303 Hg = 0.35668
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il

il

i

~0.76470

~0.45993 -

-0.15328
0.15338
0. 45992
0.78470

-0.79602

-0.53180

-0.236604
O
0.26604
0.53180
C.79603

-0.83000
-0.586823
~0.35338
-0.11744
0.11744
0.352386

- 0.258682

0.83GC0C0

Table IV (Cont.)

n

i

6

5
H

R

Il

0.30191
0.30614
0.30674
0.30674
0.30814
0.30191

0.26172
0.36540
0.36597
0.26808
0.36537
0.36540
0.36172

0.23099
0.23433
0.33474
0.23488
0.33488
0.33474
0.23433
0.33099

37
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i

il

-0.83891

~0.63036

~0. 42038

~0.21022
0

- 0.31023

0.42038
0.630236
0.83891

~0.85427
~0. 66544
—0.47552

-~0.38648

~0.09512
0.09512
0.28538
0.47552
0.86544
0.85437

-0.86691
-0.53110

Table IV {Cont.)

n

9

10

11

H, =
H: =
Hy =
H, =
E =

0.20668
0.30984
0, 21007
0.21021
0.21024
0.21021
0.21007

-0.30984

0.30668

0.18708
0.18966
0.19008
0.19022
0.19028
0.19036
0.190223
0.19008
0.18966

= 0.18706

0.17077
0.17317
0.17354

38
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Table IV (Cont.)

measurement of the resultant pressure distribution along a wing

. n= 11
Xy = —-0.34748 _ H, = 0.17365
Xs = -0.17374 Hs = 0.17373
Xs = O Ee = 0.17375
X, = 0.17374 H, = 0.17373
Xs = 0.34746 He = 0.17335
Xe = 0.52110 H, = 0.17354
X10= 0.69450 Hio= 0.17317
X,,= 0.86691 H. = 0.17077
n = 13
X, = -0.87757 Hy, = 0.15714
Xz = —-0.71894 He = 0.15933
Xs = —0.55939 Hs = 0.15969
X, = ~0.30964 . H¢ = 0.15981
Xs = «0.23980 " Hg = 0.15985
Xe = —-0.07994 He = 0.15987
X, = -0.07994 H, = 0.15987
Xs = 0.33980 He = 0.15985
- Xe = 0.39964 He = 0.15981
X10= 0.55939 Hyo= 0.15969
X,3= 0.71894 H,, = 0.15933
X,o= 0.87757 Hyo= 0.15714

A second nodification of the Gauss table refers to the



N.A.C.A. Technical Yote No. 230 40'

chord. It is known that the resultant preésure.distribution
along a chord is chiefly concentrated necar the leading edge
with most ﬁr&ctical sections.

A weight function (sinm x cos J%E) was chosen by Dr.
Hemke. The proocedure leads to Table V, likewise computed by
Dr. Hemke. The leading cdge is at the side where the spacing

is narrow, that is, x = 1, +the trailing edge being at x = G-

TABLE V.
Base length = 1.

n=>5

X, = 0.34630 H = 0.29473
% = 0.59533 _ He = 0.21273
Xs = 0.77938 Hy = 0.15658
X, = 0.90889 Hy = 0.10208
Xs = 0.98253 Hy = 0.044734

- | n==~6 '
X, = 0.31001 H = 0.26449
X2 = 0.53536 B = 0.19516
Xs = 0.70820 Hy, = 0.15212
X, = 0.84088 9 H, = 0.11330
X = 0.93448 40b Hy = 0,073617
Xs = 0.98748 M3 Hs = 0.032094

| n="19 |

X, = 0.28190 H, = 0.24083
Xz’ = 0.48809 He = 0.18000

%. = 0.84963 . Hs = 0.14479
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0.77928
0.87986
0.95088
0.99059

0.35938
0.44934
0.80103
0.72576
0.88733
0.90613
0.9€151
0.99266

0.24086
0.41818
0.56015
0.67934
0.77938
0.86130
0.92464
0.96915
0.99413

Note No. 330

Table

n =

n =
743
LY
.344
L 274
73
994
035
407

n =

0.11504

0.055816
0.055561
0.024140

6.22176
0.16702
0.13701
0.11294
0.090233
0.08672333
0.043400
0.018813

0.20604

0.15807

0.12960

0.10833

0.090897
0.073705
0.054079
0.034837
0.015070

4,
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0.228323

0.39149
0.52B23 .
- 0.83203 .

0.73639
0.81865
0.88€603
0.93818
0.974723

= 0.99518

0.31203
0.36865
0. 49531
0.60381
0.62802
0.77938
-0.84831
0.80475
0.94£28
0.978%0

= 0.89E98

2

820

Table V (Cont.)

n

10

Hy
Ha
Es
He
Es

-
<3

Hy

Ldd

.‘.;10

By

0.192381
0.14658
0.12278
0.10518
0.089719
0.074835
0.059835
0.044430
0.028560
0.013343

0.18153
0.13337
0.11661
0.10097
0.087653
0.075133
0.0683717
0.050091
0.037145
0.033842
0.010285

43
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Table V (Cont.)

n = 12
X, = 0.20060 H, = 0.17171
Xz = 0.34884 He = 0.13115
Xs = 0.46914 Hs = 0.11104
X, = 0.57283 Hy = 0.096930
Xs = 0.66378 Hg = 0.085179
Xe = 0.74351 H, = 0.074384
X, = 0.81263 H, = 0.083880
Xg = 0.87125 Hg = 0.053326
Xe = 0.91922 Eo = 0.043556
X1 = 0.95537 Hio= 0.031508
X11= 0.95837 3, LTI H.; = 0.020199
X5 = 0.99681 E, = C.0087146

Tables for Pressure Distribution Around a Circle

A particular distribution of the abscissae, neither con-
stant nor derived from Causs' rule, is the projection of points
equally spaced arocund & circle with the base as diameter. This
occurs when measuring the pressu{e distribution over the sur-
face of a round airship_hull- For reagons of symmetry, only
4, 8, 12, 186, etc., ﬁoints are of interest. The base can pass
one of the points or be symmetrical to two points of intersect-
ing points.

Dr. Hemke has comouted the multipliers for these two cases

under the assumption that at the ends the resultant pressure is
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zero. The results are given in Tables VI and VII.

(a)

TABLE VI.
runber of points in circle of unit radius.
number of projections on the diameter.
abscissae of projections on diameter.

miltipliers to use in evaluating integrals.

()

Xl = "'1 = —X3
Xo = .0

 Hy = Es =.%

. F—B = .é-'.
_ 3

(c)

¥, = -1 = -%g
¥p = —.70711 = —xq
X3 = 0

B, = .08667 = Eg

B = .53333 = K,

H, = .80000

Xy = =1 = =Xy
Yo = —.8B8805 = —X¢
B T -.50000 = —-x5

44
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E, = .03857 = H,
L, = .25397 = Hg
Hz = .45714 = Hg
Hy = .53064 ‘
(&) n =16, m=9
Xy = -1 = —Xs
%z = —.92388 = —Xg
Xg = -.70711 = =X»
Xg = —.38368 = —Xg
Xz = 0
H, = .01587 = Hg
Ep = 146323 = Hg
Hy = .2793%7 = H,
H, = .36172 = Heg
Ee = .30364
TABLE VII.
() n =4, m=3
X, = —.70711 = —Xz
Ey =.% = 1
(b) n =8, m=4
X, = ~.93388 = ~X,4
X, = —.38268 = —Xs3
U, = 234477 = Hg
Fy = .723190 = Hg

45
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(¢) n =13, m=686

X, = —-.968593 = -Xg
X = —.70711 = —-xg
Xg = —.35883 = ~Xg4
Hy = .15420 = Hg
B, = .36835 = Hg
B = .50611 = H,
() n =16. m=8
X, = —.98079 = —Xg
Xz = =:B83147 = X,

Xz = -~.55557 = —Xg

Xy = —-.19508 = -Xg
H, = .08693 = I
K, = .21705 = H,
KB = .32880 = K
H, = .38509 = Hg

It is seen that for such distribution the multipliers become uni-
form again. )

Before closing this section, I wish to make one remark on
Tchebyeheff's* method of integration. He distributes the points
so as to obtain the maltipliers = 1. This is in use in naval
architecture, but not for the measurements indicated in the
subject of this papor. We have to perform so many algebraic
opcrations before obtaining the pressure point, that one.more

* Tchcebycheff, Russian mathematician, 1821-1894.
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muiltiplication does not matter. GCGreater exactness should not

be sacrificed to saving one multiplication per pressure observed.

TABLE VIII.
Tchebycheff's Table.

n

2 0.5773

3 0 0.7071

4 0.1876 0.7947

5 0 0.3745 0.8325

6 0.2666 0.4225 0.8662

7 0 0.3239 0.5797 0.8839

9 0 0.1697 0.5288 0.8010 0.9116

Conclusion

The tables, given for the integration of the pressure, can
also be used for the corputation of functions of the observed
pressure, as, for instance, for the computation of the static
moment of the resultant ailr force with respect to some axis.

The function of each observed pressure rather than the pres—
sure iteclf has to be miltiplied by the multipliers and the
products addcd.

The choicec of the family of curves along which the pressure
holes are arranged should follow the samec rules as just given,

for the single poinits. Theo problems are indeed ldentical. For
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instence, the span of a wing cén be divided by the use of Tuble
ITII, and then each chart spaced in accordance with Table IV.

If the wing is not rectangular, the area rather than the sﬁan .
can be divided according to Table III.

Similarly, in the ai;ship hulls, circles will be the pri-
mary curves, and equal spacing is recormmendable hecause both
pliching and yawing will generally be investigated. The axis
can be divided again by dividing the lateral projected area
according to Table III.

No general rules can be given for other cases, but the in-

vestigator should be sufficiently familiar with the principles
of integratlion and of the tables presented in this paper to

select the spacing with common sense and with careful Judgment.
There is often more than one good distribution of pressure ori-
fices; the cholcs botween scveral good distributions is then a
mitter of taste and c¢f intuition, and the choice of an unsyste-
matic distribution with no special advantage should not be

tolerated.
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